

MEDICAL COMPLICATIONS AFTER TRAUMATIC BRAIN INJURY

Heidi Fusco, MD

Emma Nally, MD

October 2018

AGENDA

- Dysphagia
- Infection
- Cardiac
- VTE and PE
- Bowel and Bladder dysfunction
- Pressure ulcers
- Post-traumatic Hydrocephalus
- Visual impairments

- Seizure
- Paroxysmal sympathetic hyperactivity
- Spasticity
- Cognitive d/o

Medical Complications after Brain Injury

- Increase hospital length of stay
- Worsen functional outcome

- Risk factors
 - Severe Brain Injury
 - Older age
 - Preexisting comorbid medical conditions
 - Duration of ventilation

Dysphagia

- Due to incomplete oral clearance, impaired pharyngeal response and palatal asymmetry
- Increased risk of pneumonia
- Risks: Age > 70, male, more severe injury
- Evaluation:
 - SLP consult
 - Bedside swallow eval
 - Easy to perform
 - low sensitivity
 - Looking for a cough or voice change
 - Video fluoroscopy

Infection after Brain Injury

Pneumonia:

- Most common cause of fever in first 48 hours
- Leading cause of hospital readmission in first 5 years
- Risks: age > 65 years, speech impairment, disability, cog impairment, dysphagia, DOC, facial weakness, mechanical ventilation

– Prevention:

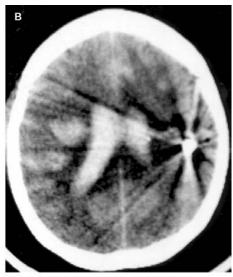
Elevated head of bed, assisted feeding, oral care, oral antiseptics,

incentive spirometry

Infections

• UTI:

- Risk: female, older age, severity of stroke, and need for catheterization
- Treat: antibiotics, remove Foley and perform intermittent catheterization



Skull and Brain Infections

- GSW higher rate of infection, due to retained gun fragments, and path of necrosis
- Skull base fractures where sinus fistulas can form
- CSF Rhinorrhea
- Craniectomy incision wound dehiscence

inshot injury; (B) cross-mid-sagittal, multilobar injury.

Cardiac

- TBI
 - "Steering wheel injuries"
 - Neurogenic stress cardiomyopathy
- Deconditioning and immobility
 - Tachycardia
 - Hypotension
 - Hypertension
 - LE edema


Venous Thromboembolism

- Risk: increased age, dehydration, hemiparesis, degree of weakness
- Prevention:
 - Intermittent compression devices
 - Contraindications
 - Fracture, arterial or venous insufficiency, heart failure, thrombophlebitis, DVT
 - Unfractionated heparin (UFC) or low molecular weight heparin (LMWH)
 - UFH administered every 8-12 hours
 - LMWH usually once daily

VTE and PE

Anticoagulation often initially contraindicated in intracranial/cerebral hemorrhage

Bowel dysfunction

– Constipation:

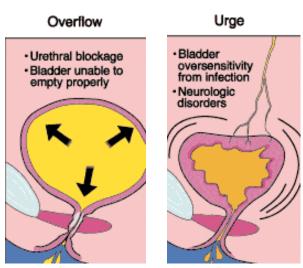
- Results in pain and decreased nutrition, impaction
- Risks: decreased mobility, dysphagia, dysfunctional contractions, deficits in cog, consciousness, and communication

– Fecal incontinence:

 Risk: older, greater severity TBI, other disabling conditions

Evaluation and Treatment of Bowel Dysfunction

- Physical exam abdomen and possibly rectal
- Abdominal xray upright and lateral decubitus
- Bowel program (fiber and fluid)
 - Meds: psyllium husk: must take in enough water
 - Docusate, miralax softeners
 - Senakot and bisacodyl: stimulant



Urinary Incontinence and Retention

- Incontinence: incidence as high as 80%
 - Results in: skin breakdown, discomfort, decreased social interaction and higher mortality
 - Medical consequences: bladder infection, reflux hydronephrosis and renal failure

Causes:

- Retention and overflow
- Detrusor over activity
- Detrusor-sphincter dyssynergia

Urinary Incontinence and Retention

Evaluation

- UTI urinalysis and culture
- Bladder scans and post void residuals

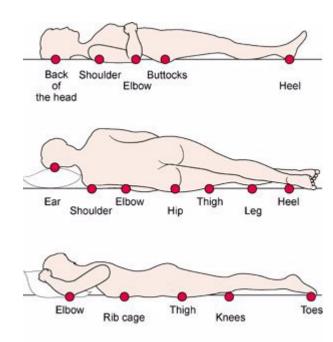
Treatment

Retention:

- Schedule intermittent catheterization
- Medication: alpha blocker

Detrusor over activity

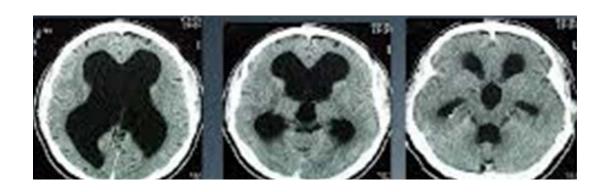
- Timed voiding
- Anticholinergic medications



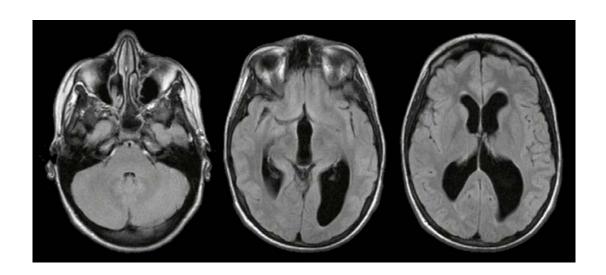
Pressure Ulcers

- Risks:
 - Impaired mobility
 - Decreased nutrition
 - Altered level of consciousness
 - Impaired sensation
 - Bowel and bladder incontinence

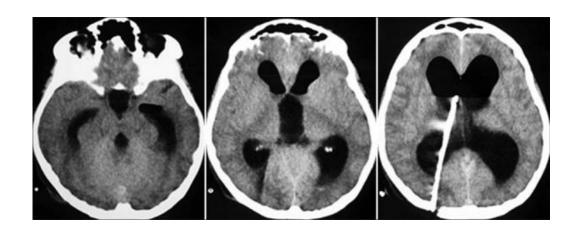
• Rx: treat underlying problem (risks)



Post-Traumatic Hydrocephalus (PTH)


- Most common after TBI is communicating hydrocephalus
- Due to an imbalance between CSF production and absorption
- Most common treatable neurosurgical complication
 - Incidence of 45 % in severe TBI
- Symptoms:
 - Headache
 - Nausea or vomiting
 - AMS, lethargic
 - Failure to progress in therapy
 - Cushing triad (hypertension, bradycardia, hypoventilation)

Communicating (Non-Obstructive) Hydrocephalus


Non-Communicating (Obstructive) Hydrocephalus

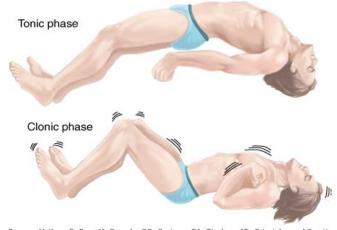
PTH

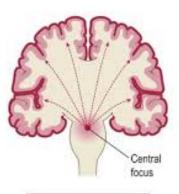
- Treatment: must relieve the pressure!
 - External Ventricular Device (EVD)
 - Shunting
- Monitor for over-draining and under-draining

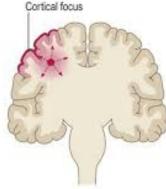
Salt disorders - Hyponatremia

- Syndrome of inappropriate ADH secretion (SIADH)
 - Euvolemic (normal hydration)
 - Treatment: fluid restriction, salt tabs, hypertonic saline
- Cerebral salt wasting
 - Hypovolemic (dehydrated)
 - Treat with hydration / fluid replacement and electrolyte (Na) correction

Salt Disorders - Hypernatremia


- Diabetes insipidus: Deficiency of ADH
 - Associated with skull fractures
 - Polyuria, polydipsia, excessive thirst
 - Treatment:
 - Drink to thirst
 - Hormone replacement
 - DDAVP (desmopressin acetate)




Post Traumatic Seizures (PTS)

- Partial (focal) seizures
 - Originate in localized area of 1 cerebral hemisphere
 - Simple partial: conscious (majority of PTS)
 - Complex partial: unconscious
- Primary generalized seizures
 - Generalized tonic-clonic seizure / generalized convulsive seizure

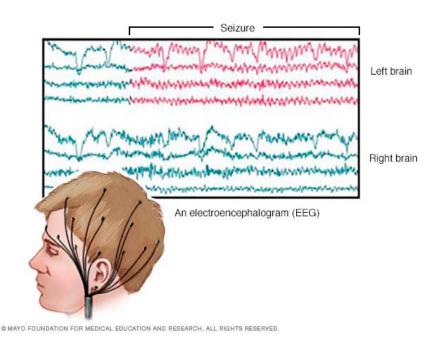
Source: McKean S, Ross JJ, Dressler DD, Brotman DJ, Ginsberg JS: Principles and Practice of Hospital Medicine: www.accessmedicine.com

Partial (focal)

Classification of PTS

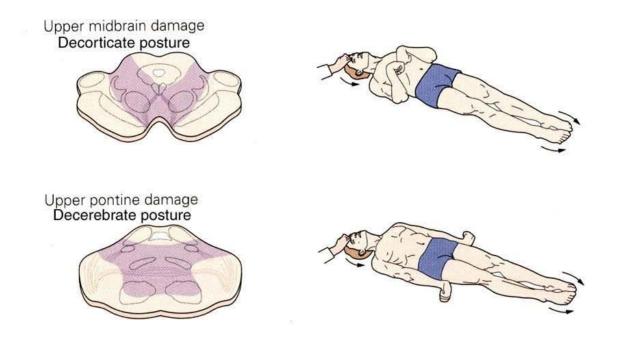
- Immediate
 - First 24 hours
- Early
 - -Occurs within the first week (24 hours 1 week)
- Late
 - -Occurs after the first week

7 days AED standard prophylaxis


Epidemiology of PTS

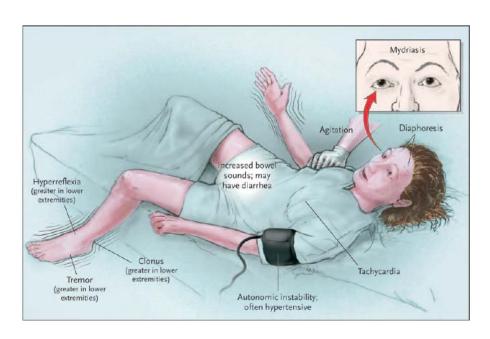
- Varies according to severity of the injury, time since the injury and the presence of risk factors
 - -most occur 1-3 months post-injury
- 5% of hospitalized TBI patients have early PTS
- 4-7% of hospitalized TBI patients have late PTS
- 50-66% of PTS occur within 1 year and 75-80% occur within 2 years

Risk Factors for Late PTS


- Brain contusion
- SDH
- Skull fracture
- Loss of consciousness
- Amnesia > 1 day
- > 65 years old
- Family history of seizures
- Alcohol abuse

NYULangone

Paroxysmal Sympathetic Hyperactivity (PSH)


- Syndrome of simultaneous and paroxysmal sympathetic and muscle over-activity following severe TBI
- Excessive activation of the sympathetic arm of the ANS due to direct trauma to the autoregulatory centers
 - Exaggerated response to physical and environmental stimuli

PSH

- Occurs within 2 weeks of injury
- Diagnosis of exclusion
 - Clinical features coexist with other medical complications (ie sepsis, pain, withdrawal)

PSH: Diagnosis

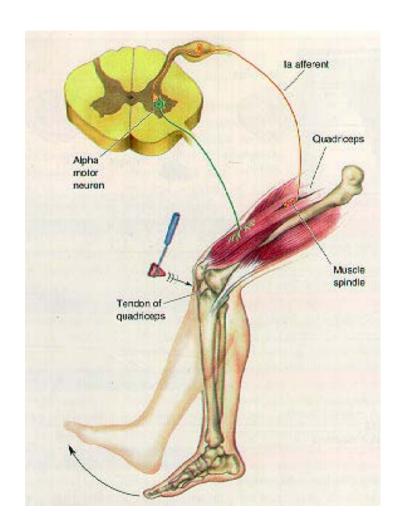
- Clinical Features: typically 5 out of 7 for at least 3 days
 - Tachycardia (>120 bpm)
 - Tachypnea (>30/min)
 - Increased temperature (>38.5°C)
 - Elevated SBP (>160 mmHg)
 - Excessive sweating
 - Increased muscle tone
 - Decorticate/decerebrate posturing

Lab Findings

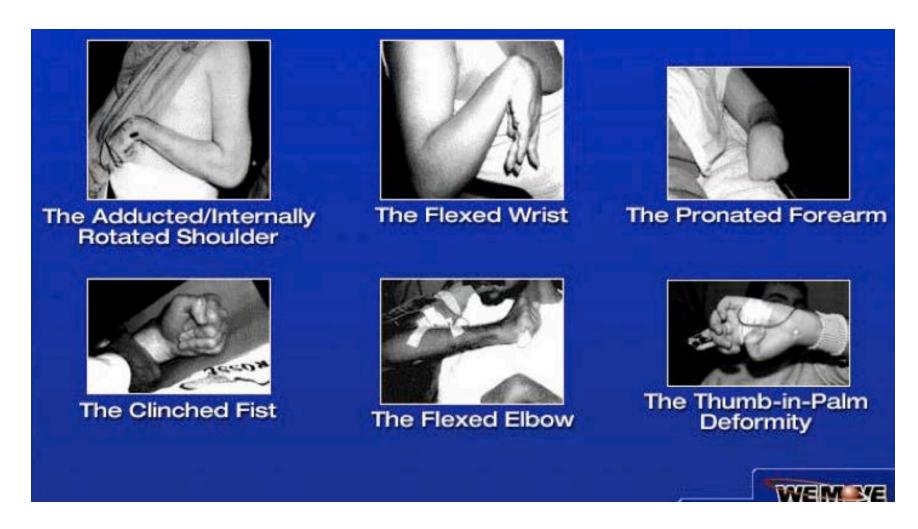
- Elevated creatinine kinase levels
- Elevated catecholamine production

PSH: Treatment

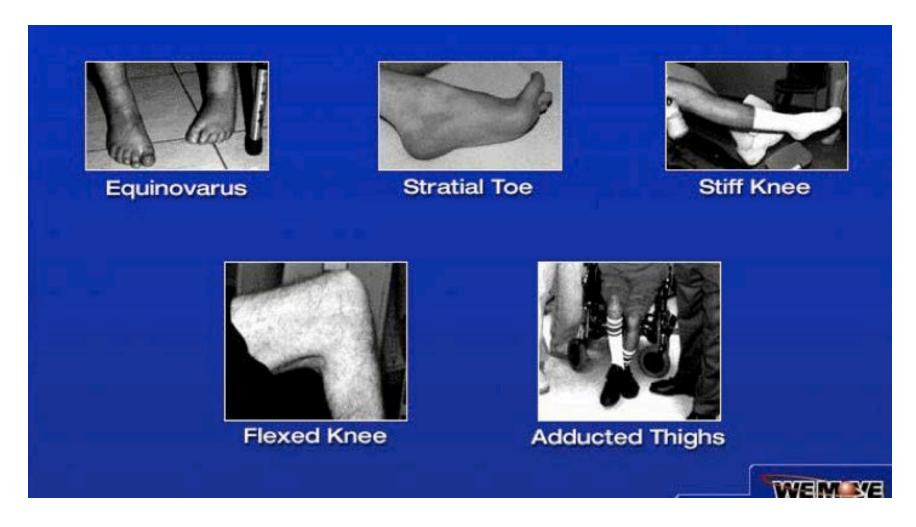
- Gabapentin
- Lipophilic beta-blockers for HTN/tachycardia
 - Propanolol and labetalol
- Dantrolene sodium for malignant hyperthermia
- NSAIDs, acetaminophen, baclofen
- Cooling blankets, NG tube lavage
- Dopamine agonists: amantadine, bromocriptine
- Intrathecal baclofen


Spasticity

- Is an upper motor neuron sign due to injury to CNS
- Velocity-dependent increased resistance to passive stretch
- Other upper motor neuron signs include:
 - Clonus
 - Pronator Drift
 - Co-Contraction
 - Flexor and extensor spasms
 - Dystonia
 - Associated reactions
 - Muscle stiffness
 - Joint contractures


Proposed Physiology of Spasticity

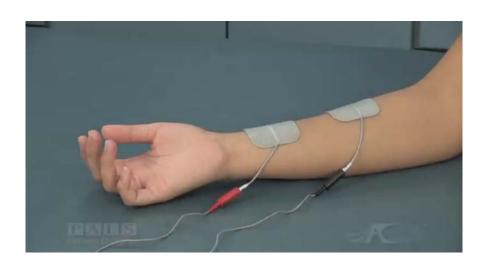
- Follows reflex pathway
- Muscle wants to maintain tone
- Much worse when damage to the brain than spinal cord



Common Patterns in Upper Extremity

Common Patterns in Lower Extremity

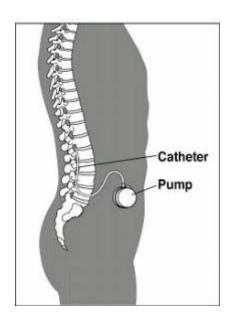
Goals of Treatment


- Reduction of muscle over activity without affecting voluntary motor control
- Improve
 - function
 - sitting
 - ambulation
 - positioning
 - cleanliness
- Facilitating fitting of an orthotic device

First Line Treatment

Therapy:

 Positioning, Strengthening antagonist, bracing, casting, taping, e-stim


Pharmacology Interventions

- Includes:
 - Baclofen
 - Tizanidine
 - Dantrolene Sodium
 - Diazepam
 - Cyclobenzaprine
 - Botulinum toxin injections
- Note:
 - Use in conjunction with therapy
 - Botulinum toxin injections give local relief of spasticity to targeted muscles while other medications are diffuse

Intrathecal Baclofen

- Baclofen is stored in pump reservour implanted subcutaneously and dosed intrathecally, continuously
- Cather placement tip can be lumbar- to cervical
- 100 fold reduction in baclofen dose

ITB Withdrawal or Overdose is an Emergency

- Withdrawal:
 - Increased spasticity
 - Rigidity
 - Fever
 - Tachycardia
 - Itching (feeling as insects under skin)
 - Hallucinations/Delirium
- Overdose
 - Respiratory depression
 - Sleepy
 - Flaccid tone
 - Urinary retention

Cognitive-Behavioral Disorders

- Agitation
- Restlessness
- Disinhibition
- Confusion
- Poor initiation
- Personality change
- Pseudobulbar affect
- Catatonia
- Emotional:
 - Emotional liability
 - Depression
 - Hypomania/mania
 - Anxiety
 - Anger
 - Apathy

Executive function

- Described as:
 - Mental processes that connect past knowledge with present action
 - Planning
 - Organizing
 - Strategizing
 - Managing time and space

Executive function testing

- Galveston orientation and amnesia test (GOAT) for PTA
- O-Log for PTA
- MMSE: Mini mental status exam
- MOCA: Montreal Cognitive Assessment
- **DRS**: Disability rating scale
- GOS: Glasgow outcome scale
- FIM cognitive score
- Neuropsychological testing

Pseudobulbar Affect

- Uncontrollable laughing, crying, or other emotional displays that are disproportionate or inappropriate to the social context
- Secondary to injury to the CNS
- Treatment:
 - SSRI, TCAs
 - Dextromethorphan with quinidine

Catatonia

- Inability to move normally
- Underlying psychiatric or medial disorder
- Most common symptoms:
 - immobility, rigidity, mutism, posturing, excessive motor activity, stupor, negativism, staring, echolalia

Treatment

- Benzodiazepines
- Electroconvulsive therapy

Summary

- TBI affects millions of people in the US
- The injury itself and the deficits as a result of the TBI often results in medical complications
- These medical complications can impair a patient's ability to participate in rehab, therefore limiting progress
- Our interdisciplinary rehab team is able to monitor the patient for these complications and treat as needed

References

- Nakase-Richardson R, McNamee S, Howe LL, et al. Descriptive characteristics and rehabilitation outcomes in active duty military personnel and veterans with disorders of consciousness with combat- and noncombat-related brain injury. Arch Phys Med Rehabil. 2013 Oct;94(10):1861-9.
- Cuccurullo S. "Physical Medicine and Rehabilitation Board Review, Third Edition". Demos Medical Publishing; 2014
- Zasler, ND, Katz, DI, Zafonte RD et al. "Brain Injury Medicine, 2nd Edition", Principles and Practice. Demos Medical Publishing; 2012.
- Da silva AM, Nunes B, Vaz AR, et al. Posttraumatic epilepsy in civilians: clinical and electroencephalographic studies. Acta Neurochir Suppl (Wien) 1992;55:56-63.
- Hudak AM, Trivedi K, Harper CR, et al. Evaluation of seizure-like episodes in survivors of moderate and severe traumatic brain injury. J Head Trauma Rehabil. 2004;19(4):290-295.
- Baguley IJ, Perkes IE, Fernandez-Ortega JF, et al. Paroxysmal sympathetic hyperactivity after acquired brain injury: consensus on conceptual definition, nomenclature, and diagnostic criteria. J Neurotrauma 2014;31(17):1515-1520.
- Rabinstein AA. Paroxysmal sympathetic hyperactivity in the neurological intensive care unit. Neurol Res 2007;29(7):680-682.
- Mazzini L, Campini R, Angelino E, et al. Posttraumatic hydrocephalus: a clinical, neuroradiologic, and neuropsychologic assessment of long-term outcome. Arch Phys Med Rehabil. 2003;84(11):1637-41.
- Kammersgaard LP, Linnemann M, Tibæk M. Hydrocephalus following severe traumatic brain injury in adults. Incidence, timing, and clinical predictors during rehabilitation. NeuroRehabilitation. 2013;33(3):473-80.

THANK YOU

